from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group,labels
def classify(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX,(dataSetSize,1))- dataSet
sqDiffMat = diffMat **2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances **0.5
sortedDistIndicies = distances.argsort()
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0)+1
sortedClassCount = sorted(classCount.iteritems(),key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]
import kNN
from numpy import *
dataSet, labels = kNN.createDataSet()
testX = array([1.2, 1.0])
k = 3
outputLabel = kNN.kNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, "and classified to class: ", outputLabel
testX = array([0.1, 0.3])
outputLabel = kNN.kNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, "and classified to class: ", outputLabel